
Quantum nonlocality of Heisenberg XX model with site-dependent coupling strength

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 11475

(http://iopscience.iop.org/0305-4470/37/47/016)

Download details:

IP Address: 171.66.16.65

The article was downloaded on 02/06/2010 at 19:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/47
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 11475–11483 PII: S0305-4470(04)79967-9

Quantum nonlocality of Heisenberg XX model with
site-dependent coupling strength

Chunfeng Wu1, Jing-Ling Chen1, D M Tong1, L C Kwek1,2

and C H Oh1

1 Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542
2 Nanyang Technological University, National Institute of Education, 1, Nanyang Walk,
Singapore 637616

E-mail: g0201819@nus.edu.sg

Received 24 April 2004
Published 10 November 2004
Online at stacks.iop.org/JPhysA/37/11475
doi:10.1088/0305-4470/37/47/016

Abstract
We show that the generalized Bell inequality is violated in the extended
Heisenberg model when the temperature is below a threshold value. The
threshold temperature values are obtained by constructing exact solutions of
the model using the temperature-dependent correlation functions. The effect
due to the presence of an external magnetic field is also illustrated.

PACS numbers: 03.67.−a, 75.10.Dg

1. Introduction

An intriguing aspect of quantum mechanics is the lack of a local realistic description that could
reproduce the necessary correlations for the experimental outcomes in composite systems
[1]. This lack of local realism can be investigated using the entangled state as discussed
in the original seminal paper by Einstein et al. Nowadays, we recognize the importance of
entanglement as a valuable resource for quantum information processing and communication.
Its usefulness has since been demonstrated clearly in processes such as quantum teleportation
[2, 3], quantum computation [4] and quantum cryptography [5].

However, concepts such as entanglement and its implications concerning the non-
existence of a local realism in quantum mechanics have a more fundamental role in quantum
mechanics. The issue of ‘locality’ as well as the notion of quantum measurements has
given rise to some of the recent and modern interpretations of quantum mechanics as well
as a better understanding of quantum phenomena [6]. It is also amidst all these theoretical
constructs that Bell proposed an inequality that could rule out the hidden variable description of
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quantum mechanics [7]. Since then, several variants of Bell inequalities, some of which were
more amenable for experimental investigations, have been derived for two-body correlation
functions to investigate the existence of local realism [8].

Recently, there has been much work on the implementation of quantum processing on
solid state devices. In this paper, we study the thermal states in a system of interaction
spins and investigate its quantum ‘nonlocality’. An interesting type of entanglement, thermal
entanglement, was studied in the context of the Heisenberg XXX [9, 10], XX [11] and XXZ
[12] models. The Heisenberg model has been shown to be a potential candidate as a model
for spin–spin interaction in a solid state quantum computer [13]. Being the large Coulomb
repulsion limit of the Hubbard model, it has been partially realized in quantum dots [13],
nuclear spins [14] and optical lattices [15]. In a recent work, Imamoglu et al [16] have realized
quantum information processing using quantum dot spins and cavity QED, and obtained an
effective interaction Hamiltonian based on the XY spin chain between two quantum dots. The
effective Hamiltonian was shown to be capable of constructing the controlled-not gate [16].
The XY Hamiltonian is given by

H =
N∑

n=1

(
J1S

x
nSx

n+1 + J2S
y
nS

y

n+1

)
(1)

where Si = σ i/2 (i = x, y, z) and σ i are Pauli operators. When J1 = J2, the XY model
becomes the XX model. In the XY model, the interaction strength between neighbouring sites
is usually assumed to be independent of the sites. In most solid state models however, the
inter-site coupling strength is site dependent. In this paper we consider an extended quantum
XX model in which the interaction strength assumes a particular site-dependent form.

This paper is organized as follows. In section 2, solutions of the extended XX model
for four particles are given. In section 3, we construct the temperature-dependent correlation
functions in terms of the thermal equilibrium state and investigate the violation of the Bell
inequality for the thermal state. The threshold temperature is given. We also point out that the
eigenstates of the extended XX model do not realize maximal violation of the Bell inequality.
The effect of an external magnetic field is discussed in section 5 and we end with some
discussions in the final section.

2. Solution of the extended XX model

The extended XX Heisenberg model is described by the Hamiltonian

H = 2
N−1∑

n=1

Jn,n+1
(
σx

n σ x
n+1 + σy

n σ
y

n+1

)

=
N−1∑

n=1

Jn,n+1
(
σ +

n σ−
n+1 + σ−

n σ +
n+1

)
(2)

where Jn,n+1 = √
n(N − n) is the coupling strength between lattices n and n + 1. Obviously,

the Hamiltonian H describes a nearest-neighbour interaction spin chain. Interestingly, such a
Hamiltonian has been shown to be useful for perfect state transfer in quantum spin networks
[17]. The Hamiltonian H possesses 2N complete and orthonormal eigenstates.

When spin chains are subjected to environmental disturbance, they inevitably become
thermal equilibrium states. The state of a system at finite temperature T is given by the Gibb’s
density operator ρ(T ) = exp(−H/kT )/Z, where Z = Tr[exp(−H/kT )] is the partition
function, H is the system Hamiltonian and k is the Boltzmann constant, which is set to unity
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for convenience in this paper. At high temperature, the thermal state becomes maximally
mixed and does not violate Bell inequalities of any kind. It is therefore interesting to consider
the critical temperature at which a Bell inequality will be violated. For a two-qubit system, we
have the original Bell inequality. For an arbitrary number of qubits, we have the Zukowski–
Brukner inequality [8].

Unfortunately it is not possible to test the Zukowski–Brukner inequality for three qubits
in this case since the correlation functions defined below are zero. Therefore, in this paper,
we first focus on the next non-trivial case of a 4-qubit system and test the violation of the local
realistic description using the Zukowski–Brukner inequality. The extension to an arbitrary
number of sites, albeit complicated, can also be done in the same manner. The Hamiltonian
has 16 eigenvalues

E0 = E7 = E8 = E15 = 0,

E3 = E13 = −1, E4 = E14 = 1,

E6 = −2, E9 = 2, (3)

E1 = E11 = −3, E2 = E12 = 3,

E5 = −4, E10 = 4.

The corresponding eigenstates {|φ0〉, |φ1〉, . . . , |φ15〉} can be computed easily and can be found
in appendix A. The above eigenvalues and eigenstates completely determine the thermal states.
The density operator ρ(T ) at the temperature T can be written as

ρ(T ) = 1

Z

15∑

µ=0

e−βEµ |φµ〉〈φµ| (4)

where β = 1/T and the partition function

Z = Tr(e−βH ) =
15∑

µ=0

e−βEµ

= 4 + 4 cosh(3β) + 4 cosh β + 2 cosh(4β) + 2 cosh(2β). (5)

3. Violation of 4-qubit Bell inequality and the threshold temperature

To test quantum nonlocality for the state ρ(T ), correlation function Qijkl should be computed.
From the definition of Qijkl [8], we have

Qijkl = Tr[ρ(n̂i · �σ) ⊗ (n̂j · �σ) ⊗ (n̂k · �σ) ⊗ (n̂l · �σ)]

= 1

Z

15∑

µ=0

e−βEµ Tr[|φµ〉〈φµ|(n̂i · �σ) ⊗ (n̂j · �σ) ⊗ (n̂k · �σ) ⊗ (n̂l · �σ)]

= 1

Z

15∑

µ=0

e−βEµQ
µ

ijkl (6)

where n̂α = (sin θα, 0, cos θα), α = i, j, k, l. Q
µ

ijkl is the correlation function for the
eigenstate |φµ〉,

Q
µ

ijkl = Tr[|φµ〉〈φµ|(n̂i · �σ) ⊗ (n̂j · �σ) ⊗ (n̂k · �σ) ⊗ (n̂l · �σ)]. (7)
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Figure 1. For a local realistic description of quantum mechanics, the Bell quantity B must
necessarily be less than 4. However, the Bell quantity as a function of temperature T shows that
there is a significant violation of the Bell inequality at T < 0.626.

For instance, the quantum correlation for the ground state |φ5〉 is given by

Q5
ijkl = cos θi cos θj cos θk cos θl +

√
3

2 cos θk cos θl sin θi sin θj

−
√

3
4 cos θj cos θl sin θi sin θk + 1

2 cos θi cos θl sin θj sin θk

+ 1
2 cos θj cos θk sin θi sin θl −

√
3

4 cos θi cos θk sin θj sin θl

+
√

3
2 cos θi cos θj sin θk sin θl + sin θi sin θj sin θk sin θl. (8)

Other quantum correlation functions can also be calculated in a similar way. The correlation
function for the thermal state ρ(T ) is computed using equation (6). Based on the calculated
values of Qijkl , we construct Bell quantity B

B = Q1111 − Q1112 − Q1121 − Q1122 − Q1211 − Q1212 − Q1221 + Q1222

−Q2111 − Q2112 − Q2121 + Q2122 − Q2211 + Q2212 + Q2221 + Q2222. (9)

For a local realistic description, we require −4 � B � 4. In figure 1, we have numerically
computed the Bell quantity as a function of temperature. The results show that violation of
the Bell inequality occurs at T � T0 = 0.626. We call this critical value T0 the threshold
temperature. The maximum value of B for the state ρ(T ) approaches 7.917 at temperature
close to zero.

We have also evaluated the Bell quantity B(|φµ〉) in terms of correlation functions of each
pure state |φµ〉. The maximum values of B(|φµ〉) are

Bmax(|φµ〉) = 4 for |φ0,15〉
6.112 for |φ1,2,3,4,11,12,13,14〉
7.917 for |φ5,10〉
5.657 for |φ6,9〉
4.866 for |φ7〉
4.060 for |φ8〉.

(10)
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We can explain qualitatively why the maximum value of B for the thermal state should
be 7.917 by noting that the thermal state ρ(T ) is the linear combination of |φµ〉〈φµ| weighted
with the factors e−βEµ . For eigenvalue E5 = −4,Bmax(|φ5〉) = 7.917, the power is e4β

and when β is large enough, the Bell quantity B is totally determined by the contribution of
state |φ5〉. Another thing worth noting is that the eigenstates of extended XX model do not
lead to the highest value of Bmax. We check that the maximum value of the Bell quantities
consists of correlation functions for the following three general states,

|φ′〉 = cos α1|1000〉 + sin α1 cos α2|0100〉 + sin α1 sin α2 cos α3|0010〉
+ sin α1 sin α2 sin α3|0001〉 (11)

|φ′′〉 = cos α1|1110〉 + sin α1 cos α2|1101〉 + sin α1 sin α2 cos α3|1011〉
+ sin α1 sin α2 sin α3|0111〉 (12)

|φ′′′〉 = cos α1|1100〉 + sin α1 cos α2|1010〉 + sin α1 sin α2 cos α3|1001〉
+ sin α1 sin α2 sin α3 cos α4|0110〉 + sin α1 sin α2 sin α3 sin α4 cos α5|0101〉
+ sin α1 sin α2 sin α3 sin α4 sin α5|0011〉 (13)

and find that

Bmax(|φ′
0〉) = 6.217 Bmax(|φ′′

0 〉) = 6.217 Bmax(|φ′′′
0 〉) = 8.485 (14)

for |φ′
0〉 = 1/2(|1000〉+|0100〉+|0010〉+|0001〉), |φ′′

0 〉 = 1/2(|1110〉+|1101〉+|1011〉+|0111〉)
and |φ′′′

0 〉 = 1/
√

6(|1100〉 + |1010〉 + |1001〉 + |0110〉 + |0101〉 + |0011〉) respectively. It is easy
to see that the degree of violation of Bell’s inequality for state |φ′

0〉 is higher than that for the
eigenstates |φµ〉(µ = 1, 2, 3, 4) listed in equation (A.2). The same results also happen for the
eigenstates |φµ〉(µ = 11, 12, 13, 14) and |φµ〉(µ = 5, 6, 7, 8, 9, 10) respectively. We see that
among all possible Bmax, the state |φ′′′

0 〉 yields the largest violation.

4. The effect of an external magnetic field

In this section, we would like to study the effect of a magnetic field on the nonlocality property
of a thermal state in a general way, for which the Hamiltonian becomes

H ′ = 2
N−1∑

n=1

Jn,n+1
(
σ +

n σ−
n+1 + σ−

n σ +
n+1

)
+ B

N∑

n=1

σz (15)

where B is the strength of the magnetic field. It is easy to verify that the eigenstates of H ′ are
identical with those listed in expression (A.2) of H, but with different eigenvalues

E′
0 = 4B, E′

1 = −3 + 2B, E′
2 = 3 + 2B, E′

3 = −1 + 2B,

E′
4 = 1 + 2B, E′

5 = −4, E′
6 = −2, E′

7 = 0,

E′
8 = 0, E′

9 = 2, E′
10 = 4, E′

11 = −3 − 2B,

E′
12 = 3 − 2B, E′

13 = −1 − 2B, E′
14 = 1 − 2B, E′

15 = −4B

(16)

and hence, a new correlation function and Bell quantity B′ are given

Q′
ijkl = 1

Z′

15∑

µ=0

e−βE′
µQ

µ

ijkl (17)
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Figure 2. The Bell quantity for the cases with magnetic field B = 0.1, 0.5, 1.0, 1.5 and 2.

(This figure is in colour only in the electronic version)

Table 1. Threshold temperatures for different strengths of the external magnetic field. When
B = 0.5 and B = 1.5 and above, the values of the Bell quantity are not greater than 4 at all times.
Therefore, no threshold temperatures exist for these cases.

B 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

T0 0.626 0.611 0.556 0.447 0.248 None 0.122 0.243

B 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 and above

T0 0.351 0.427 0.467 0.472 0.436 0.343 0.18 None

B′ = Q′
1111 − Q′

1112 − Q′
1121 − Q′

1122 − Q′
1211 − Q′

1212 − Q′
1221 + Q′

1222

−Q′
2111 − Q′

2112 − Q′
2121 + Q′

2122 − Q′
2211 + Q′

2212 + Q′
2221 + Q′

2222 (18)

where Z′ = Tr(e−βH ′
). Now the violation of the Bell inequality depends not only on the

temperature, but also on the external magnetic field. Our numerical calculations are shown in
figure 2.

There are five curves corresponding to B = 0.1, 0.5, 1.0, 1.5 and 2 respectively. When
B = 0.1, the Bell quantity shows a similar variation of the violation of the Bell inequality
as a function of T in the absence of a magnetic field. With increasing value of the external
magnetic field, the maximum value of the Bell quantity approaches the value 2 for which
the B field is about 1.5. The variation of the Bell quantity as a function of magnetic field
can be explained qualitatively as follows. The ρ ′(T ) is a different combination of |φµ〉〈φµ|
compared with ρ(T ). The largest contribution of all the states |φµ〉 is determined by the
value of B. When B < 0.5, it is the eigenstate, |φ5〉, which ultimately determines the maximal
value of the Bell quantity (Bmax = 7.917) since e−βE′

5 = e4β is the largest power among all
the factors. When 0.5 < B < 1.5, |φ11〉 takes the place of |φ5〉 with power e(3+2B)β and
Bmax = 6.112 at B = 1.0, for example. When B > 2, e−βE′

15 = e4Bβ is the one with the
largest contribution and Bmax = 4. But there are two singular values of B = 0.5 and 1.5.
In these two cases, Bmax < 4. The reason for this is that the largest factors of e−βE′

µ are
e−βE′

5 = e−βE′
11 = e4β for B = 0.5, e−βE′

15 = e−βE′
11 = e6β for B = 1.5, respectively. Thus

the Bell quantity is determined principally using a combination of these two elements of Q
µ

ijkl ,
namely, e4β

(
Q5

ijkl + Q11
ijkl

)
and e6β

(
Q15

ijkl + Q11
ijkl

)
. Note that the maximum values of the Bell

quantity for the latter two correlation functions are 2.228 and 2.081 respectively.
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The critical temperatures under different magnetic fields have been found (table 1). The
variation of T0 with increasing strength of B is more complicated. This complication arises
mainly because the eigenstates contributing to the optimization of critical temperatures are
different from those needed for the optimization of magnetic fields. In the latter case, Bmax

is totally determined by the contribution of the state with the largest weight or factor for
sufficiently large β. In the former case, depending on the value of the external magnetic field,
the eigenstates contributing to the optimization changes and so the optimization are determined
using a combination of the correlation functions from different states. In short, the variation
of T0 with B is different from that of Bmax with B.

5. Conclusion

In this paper, we consider the extended Heisenberg XX model, modelling the nearest-neighbour
interaction spin chain. For the 4-qubit extended XX model, it is shown that since the correlation
functions depend on the temperature and the magnetic field, the violation of the Bell inequality
for the thermal state depends critically on these two parameters. The effect of temperature for
a local realistic description of quantum theory is determined by the threshold value of T below
which the thermal state violates the Bell inequality. The effects of temperature are also studied
at different strengths of magnetic field. For a fixed temperature, we can find the optimal value
of the external magnetic field for the violation of Bell inequalities. Our results imply that
quantum ‘nonlocality’ could be effectively controlled by magnetic field and temperature. We
restrict ourselves to the 4-qubit case. However, we could also have discussed the violation
of the Bell inequality for the thermal state for the 2-qubit and 3-qubit cases. For the 2-qubit
extended XX model, the Bell quantity approaches 2

√
2 which is the maximal violation of the

2-qubit Bell inequality and the corresponding threshold value of temperature is T0 = 0.667
when B = 0. However, for the 3-qubit case, the correlation function defined by this method
is always equal to 0. The violation of the Bell inequality for arbitrary number of qubits can
also be done in the same manner.
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Appendix A. Eigenstates of the 4-qubit Hamiltonian

Corresponding to the 16 eigenvalues of the Hamiltonian

E0 = E7 = E8 = E15 = 0,

E3 = E13 = −1, E4 = E14 = 1,

E6 = −2, E9 = 2, (A.1)

E1 = E11 = −3, E2 = E12 = 3,

E5 = −4, E10 = 4,

the orthogonal eigenstates are

|φ0〉 = |0000〉
|φ1〉 = 1

2
√

2
(−|1000〉 +

√
3|0100〉 −

√
3|0010〉 + |0001〉)
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|φ2〉 = 1
2
√

2
(|1000〉 +

√
3|0100〉 +

√
3|0010〉 + |0001〉)

|φ3〉 =
√

3
2
√

2

(|1000〉 − 1√
3
|0100〉 − 1√

3
|0010〉 + |0001〉)

|φ4〉 =
√

3
2
√

2

(−|1000〉 − 1√
3
|0100〉 + 1√

3
|0010〉 + |0001〉)

|φ5〉 = 1
4 (|1100〉 − 2|1010〉 +

√
3|1001〉 +

√
3|0110〉 − 2|0101〉 + |0011〉)

|φ6〉 = 1
2 (−|1100〉 + |1010〉 − |0101〉 + |0011〉)

|φ7〉 =
√

3√
10

(|1100〉 − 2√
3
|1001〉 + |0011〉)

|φ8〉 = 5
2
√

10

(−
√

3
5 |1100〉 − 3

5 |1001〉 + |0110〉 −
√

3
5 |0011〉)

|φ9〉 = 1
2 (−|1100〉 − |1010〉 + |0101〉 + |0011〉)

|φ10〉 = 1
4 (|1100〉 + 2|1010〉 +

√
3|1001〉 +

√
3|0110〉 + 2|0101〉 + |0011〉)

|φ11〉 = 1
2
√

2
(−|1110〉 +

√
3|1101〉 −

√
3|1011〉 + |0111〉)

|φ12〉 = 1
2
√

2
(|1110〉 +

√
3|1101〉 +

√
3|1011〉 + |0111〉)

|φ13〉 =
√

3
2
√

2

(|1110〉 − 1√
3
|1101〉 − 1√

3
|1011〉 + |0111〉)

|φ14〉 =
√

3
2
√

2

(−|1110〉 − 1√
3
|1101〉 + 1√

3
|1011〉 + |0111〉)

|φ15〉 = |1111〉.
(A.2)

Appendix B. Quantum correlation functions for each pure state

The calculation of the quantum correlation functions is straightforward. In this appendix,
we list all the correlation functions for each eigenstate of the 4-qubit Hamiltonian for easy
reference.

Correlation function Explicit expression

Q0
ijkl = Q15

ijkl cos θi cos θj cos θk cos θl

Q1
ijkl = Q11

ijkl −cos θi cos θj cos θk cos θl −
√

3
4 cos θk cos θl sin θi sin θj

+
√

3
4 cos θj cos θl sin θi sin θk − 3

4 cos θi cos θl sin θj sin θk

− 1
4 cos θj cos θk sin θi sin θl +

√
3

4 cos θi cos θk sin θj sin θl

−
√

3
4 cos θi cos θj sin θk sin θl

Q2
ijkl = Q12

ijkl −cos θi cos θj cos θk cos θl +
√

3
4 cos θk cos θl sin θi sin θj

+
√

3
4 cos θj cos θl sin θi sin θk + 3

4 cos θi cos θl sin θj sin θk

+ 1
4 cos θj cos θk sin θi sin θl +

√
3

4 cos θi cos θk sin θj sin θl

+
√

3
4 cos θi cos θj sin θk sin θl

Q3
ijkl = Q13

ijkl −cos θi cos θj cos θk cos θl −
√

3
4 cos θk cos θl sin θi sin θj

−
√

3
4 cos θj cos θl sin θi sin θk + 1

4 cos θi cos θl sin θj sin θk
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+ 3
4 cos θj cos θk sin θi sin θl −

√
3

4 cos θi cos θk sin θj sin θl

−
√

3
4 cos θi cos θj sin θk sin θl

Q4
ijkl = Q14

ijkl −cos θi cos θj cos θk cos θl +
√

3
4 cos θk cos θl sin θi sin θj

−
√

3
4 cos θj cos θl sin θi sin θk − 1

4 cos θi cos θl sin θj sin θk

− 3
4 cos θj cos θk sin θi sin θl −

√
3

4 cos θi cos θk sin θj sin θl

+
√

3
4 cos θi cos θj sin θk sin θl

Q6
ijkl cos θi cos θj cos θk cos θl + cos θi cos θl sin θj sin θk

−cos θj cos θk sin θi sin θl − sin θi sin θj sin θk sin θl

Q7
ijkl cos θi cos θj cos θk cos θl + 2

√
3

5 cos θj cos θl sin θi sin θk

2
√

3
5 cos θi cos θk sin θj sin θl + 3

5 sin θi sin θj sin θk sin θl

Q8
ijkl cos θi cos θj cos θk cos θl +

√
3

10 cos θj cos θl sin θi sin θk
√

3
10 cos θi cos θk sin θj sin θl − 3

5 sin θi sin θj sin θk sin θl

Q9
ijkl cos θi cos θj cos θk cos θl − cos θi cos θl sin θj sin θk

+ cos θj cos θk sin θi sin θl − sin θi sin θj sin θk sin θl

Q10
ijkl cos θi cos θj cos θk cos θl −

√
3

2 cos θk cos θl sin θi sin θj

−
√

3
4 cos θj cos θl sin θi sin θk − 1

2 cos θi cos θl sin θj sin θk

− 1
2 cos θj cos θk sin θi sin θl −

√
3

4 cos θi cos θk sin θj sin θl

−
√

3
2 cos θi cos θj sin θk sin θl + sin θi sin θj sin θk sin θl
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